Mixture theory

Results: 438



#Item
261Probability interpretations / Bayesian statistics / Frequentist inference / Probability theory / Probability / Bayesian probability / Likelihood principle / Bayes factor / Statistics / Statistical inference / Philosophy of science

Forensic DNA Mixture Interpretation Statistical Approaches for DNA Mixtures MAFS Workshop

Add to Reading List

Source URL: www.cstl.nist.gov

Language: English - Date: 2012-09-28 09:23:14
262Statistical theory / Maximum likelihood / Normal distribution / Variance / Expectation–maximization algorithm / Mixture model / Covariance matrix / Mixture distribution / Statistics / Estimation theory / Data analysis

Engineering Tripos Part IIB FOURTH YEAR Module 4F10: STATISTICAL PATTERN RECOGNITION Examples Paper 1

Add to Reading List

Source URL: mi.eng.cam.ac.uk

Language: English - Date: 2013-11-08 06:57:05
263Physiologically based pharmacokinetic modelling / Hierarchical Bayes model / Estimation theory / Prior probability / Confidence interval / Parameter / Point estimation / Hyperparameter / Mixture model / Statistics / Bayesian statistics / Statistical inference

Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models Jimena Davis1, John Wambaugh1, Ramon I. Garcia2, R. Woodrow Setzer1 research d ev el opme nt

Add to Reading List

Source URL: epa.gov

Language: English - Date: 2012-05-07 10:14:12
264Estimation theory / Econometrics / Statistical models / Expectation–maximization algorithm / Mixture model / Markov chain / Linear regression / Latent Dirichlet allocation / Regression analysis / Statistics / Bayesian statistics / Markov models

Journal of Machine Learning Research[removed]1347 Submitted 6/12; Published 5/13 Stochastic Variational Inference Matthew D. Hoffman

Add to Reading List

Source URL: www.cs.princeton.edu

Language: English - Date: 2013-06-14 05:31:44
265Statistical models / Dynamic topic model / Markov models / Control theory / Variational Bayesian methods / Latent Dirichlet allocation / Mixture model / Topic model / Probabilistic latent semantic analysis / Statistics / Statistical natural language processing / Bayesian statistics

Continuous Time Dynamic Topic Models Chong Wang Computer Science Dept. Princeton University Princeton, NJ 08540

Add to Reading List

Source URL: www.cs.princeton.edu

Language: English - Date: 2010-08-18 22:20:53
266Genetic genealogy / Estimation theory / Haplotype / Probability theory / Expectation–maximization algorithm / Marginal likelihood / Laplace distribution / Algorithm / Probability distribution / Statistics / Mathematics / Applied mathematics

Package ‘disclapmix’ July 2, 2014 Type Package Title Discrete Laplace mixture inference using the EM algorithm Version 1.5 Date[removed]

Add to Reading List

Source URL: cran.r-project.org

Language: English - Date: 2014-07-02 11:38:12
267Machine learning / Probability theory / Dirichlet process / Chinese restaurant process / Mixture model / Cluster analysis / Mixture / Exchangeable random variables / Statistics / Stochastic processes / Statistical models

Journal of Machine Learning Research[removed]2410 Submitted 10/09; Revised 12/10; Published 8/10 Distance Dependent Chinese Restaurant Processes David M. Blei

Add to Reading List

Source URL: www.cs.princeton.edu

Language: English - Date: 2013-02-16 21:04:48
268Maximum likelihood / Likelihood function / Multivariate normal distribution / Mixture model / Normal distribution / Statistics / Estimation theory / Expectation–maximization algorithm

5. Mixtures and Products of Experts University of Cambridge Engineering Part IIB Module 4F10: Statistical Pattern Processing

Add to Reading List

Source URL: mi.eng.cam.ac.uk

Language: English - Date: 2013-11-13 04:10:48
269Statistical inference / Markov models / Statistical models / Multivariate normal distribution / Speech recognition / Hidden Markov model / Additive white Gaussian noise / Mixture model / Linear regression / Statistics / Estimation theory / Regression analysis

Model-Based Approaches to Handling Uncertainty M.J.F. Gales Abstract A powerful approach for handling uncertainty in observations is to modify the statistical model of the data to appropriately reflect this uncertainty.

Add to Reading List

Source URL: mi.eng.cam.ac.uk

Language: English - Date: 2010-09-03 04:10:35
270Machine learning / Estimation theory / Statistical theory / Expectation–maximization algorithm / Bayesian network / Gibbs sampling / Perceptron / Kullback–Leibler divergence / Mixture model / Statistics / Statistical models / Neural networks

Learning Stochastic Feedforward Neural Networks Yichuan Tang Department of Computer Science University of Toronto Toronto, Ontario, Canada.

Add to Reading List

Source URL: www.cs.toronto.edu

Language: English - Date: 2013-11-19 21:06:13
UPDATE